Characterization of the human patatin-like phospholipase family.
نویسندگان
چکیده
Several publications have described biological roles for human patatin-like phospholipases (PNPLAs) in the regulation of adipocyte differentiation. Here, we report on the characterization and expression profiling of 10 human PNPLAs. A variety of bioinformatics approaches were used to identify and characterize all PNPLAs encoded by the human genome. The genes described represent a divergent family, most with a highly conserved ortholog in several mammalian species. In silico characterization predicts that two of the genes function as integral membrane proteins and are regulated by cAMP/cGMP. A structurally guided protein alignment of the patatin-like domain identifies a number of conserved residues in all family members. Quantitative PCR was used to determine the expression profile of each family member. Affymetrix-based profiling of a human preadipocyte cell line identified several members that are differentially regulated during cell differentiation. Cumulative data suggest that patatin-like genes normally expressed at very low levels are induced in response to environmental signals. Given the observed conservation of the patatin fold and lipase motif in all human PNPLAs, a single nomenclature to describe the PNPLA family is proposed.
منابع مشابه
Functional regions of the Pseudomonas aeruginosa cytotoxin ExoU.
ExoU, a potent patatin-like phospholipase, causes rapid cell death following its injection into host cells by the Pseudomonas aeruginosa type III secretion system. To better define regions of ExoU required for cytotoxicity, transposon-based linker insertion mutagenesis followed by site-directed mutagenesis of individual residues was employed by using a Saccharomyces cerevisiae model system. Ran...
متن کاملMammalian patatin domain containing proteins: a family with diverse lipolytic activities involved in multiple biological functions.
The human genome expresses nine patatin-like phospholipase domain containing proteins (PNPLA1-9). Members of this family share a protein domain discovered initially in patatin, the most abundant protein of the potato tuber. Patatin is a lipid hydrolase with an unusual folding topology that differs from classical lipases. Mammalian PNPLAs include lipid hydrolases with specificities for diverse s...
متن کاملVertebrate patatin-like phospholipase domain-containing protein 4 (PNPLA4) genes and proteins: a gene with a role in retinol metabolism
At least eight families of mammalian patatinlike phospholipase domain-containing proteins (PNPLA) (E.C. 3.1.1.3) catalyse the hydrolysis of triglycerides, including PNPLA4 (alternatively PLPL4 or GS2), which also acts as a retinol transacylase and participates in retinolester metabolism in the body. Bioinformatic methods were used to predict the amino acid sequences, secondary and tertiary stru...
متن کاملUbiquitin activates patatin-like phospholipases from multiple bacterial species.
Phospholipase A2 enzymes are ubiquitously distributed throughout the prokaryotic and eukaryotic kingdoms and are utilized in a wide array of cellular processes and physiological and immunological responses. Several patatin-like phospholipase homologs of ExoU from Pseudomonas aeruginosa were selected on the premise that ubiquitin activation of this class of bacterial enzymes was a conserved proc...
متن کاملExpression of a Patatin-like Protein in the Anthers of Potato and Sweet Pepper Flowers.
Patatin, the major glycoprotein in potato tubers, is encoded by a multigene family. RNA and protein analyses reveal that a homologous mRNA and an immunologically cross-reacting protein can be found in potato flowers, which is similar to patatin in that it displays a lipid acyl hydrolase activity. The patatin-like protein found in flowers has a higher molecular weight than the authentic tuber pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of lipid research
دوره 47 9 شماره
صفحات -
تاریخ انتشار 2006